Fabrication of a porous polymer membrane enzyme reactor and its enzymatic kinetics study in an artificial kidney model

2020 
Abstract A porous polymer membrane-based d -amino acid oxidase (DAAO) reactor was developed that mimicked enzymatic activity in a renal ischemia model. Using glycidyl methacrylate as a biocompatible reactive monomer, poly(styrene-glycidyl methacrylate) was synthesized via a reversible addition fragment chain transfer polymerization technique. The prepared porous polymer membrane was used as a support to effectively immobilize DAAO. Compared to DAAO modified on nonporous polymer membrane and free DAAO in solution, the constructed porous polymer membrane-based DAAO enzyme reactor displayed 3-fold and 19-fold increase in enzymolysis efficiency, respectively. In addition, a chiral ligand exchange capillary electrophoresis system for DAAO was used to study DAAO enzymatic kinetics with d , l -methionine as the substrate. The proposed porous polymer membrane-based enzyme reactor showed excellent performance both on reproducibility and stability. Moreover, the enzyme reactor was successfully applied to mimic DAAO activity in a renal ischemia model. These results demonstrated that the enzyme could be efficiently immobilized onto a porous polymer membrane as an enzyme reactor and has great potential in mimicking the enzymatic activity in kidney.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []