Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach
2020
Due to the abundance of surface water in the province of Quebec, Canada, it is suspected that many groundwater wells are pumping a mixture of groundwater and surface water via induced bank filtration (IBF). The regulatory framework in Quebec provides comprehensive guidelines for the development and monitoring of surface water and groundwater drinking water production systems. However, the regulations do not specifically address hybrid groundwater-surface water production systems such as IBF sites. More knowledge on the use of IBF in the province is needed to adjust the regulations with respect to the particularities of these systems. In order to provide a first evaluation of municipal wells potentially using IBF and the corresponding population served by these wells, a Geographic Information Science framework (GISc) was used to implement an IBF spatial database and calculate the distance from each well to the nearest surface water body. GISc is based on open source GIS programs and openly available data, to facilitate the reproducibility of the work. From this provincial scale approach, we show that nearly one million people are supplied by groundwater from municipal wells located <500 m from a surface water body, and half a million have a significant probability to be supplied by IBF wells. A more focused look at the watershed scale distribution of wells allows us to improve our interpretations by considering the aquifer type and other regional factors. This approach reveals strong spatial variability in the distribution of wells in proximity to surface water. Of the three selected regions, one has a high potential for IBF (Laurentides), one requires additional information do draw precise conclusions (Nicolet), and the third region (Vaudreuil-Soulanges) is unlikely to have widespread use of IBF. With this study, we demonstrate that extensive use of IBF is likely and that there is a need for improved understanding and management of these sites in order to properly protect the drinking water supply.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
39
References
5
Citations
NaN
KQI