Self-assembly and rheological behaviors of intermacromolecular complexes consisting of oppositely charged fluorinated guar gums

2018 
Abstract We synthesized fluorinated cationic/anionic guar gums (FCGG and FAGG) and characterized these species using Fourier transform infrared spectroscopy and 1 H nuclear magnetic resonance spectroscopy. The degree of fluorine substitution of FCGG (0.26%) and FAGG (0.21%) was calculated by elemental analysis. In addition, we explored the self-assembly and rheological behaviors of FCGG-FAGG complexes by viscometry, scanning electron microscopy, light scattering, fluorescence spectroscopy, and rheometry. The maximum viscosity and molecular weights were observed with a FAGG:FCGG mass ratio of 7.0:3.0, denoted by COMP. Moreover, FAGG-FCGG interactions in COMP led to the lowest shape factor and critical associating concentration. Additionally, the relaxation time and crossover modulus of COMP (6.65 s and 0.90 Pa, respectively) were remarkably higher than those of FCGG and FAGG alone. Finally, viscoelastic hysteresis loops emerged for FAGG and COMP. The results suggested that the self-assembly behaviors of FAGG-FCGG were influenced by both ionic and fluorinated groups.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []