Biomechanical Properties of Extensor Tendon Repair Using the Six-Strand Single-Loop Suture Technique: A Comparative Analysis With Three Other Techniques in Cadaveric Models

2011 
A six-strand single-loop technique has been implemented for repairing extensor tendons. This paper describes an investigation to compare the biomechanical properties of extensor tendons repaired using this technique with three other commonly used techniques, namely the Kessler-Tajima (two-stand) technique, the Tsuge (two-strand) technique, and the modified (four-strand and double-loop) Tsuge technique. Epitendinous stitches were implemented on all techniques. From human cadaveric hands, extensor tendons were harvested, transected, and repaired using these techniques. Tensile test was performed on the repaired tendons to determine the force at the first gap opening, 1-mm and 2-mm gap distances and at the maximum load. We have observed that at the first gap opening, the forces generated in the tendons repaired using the six-strand, Kessler-Tajima, and modified Tsuge techniques are significantly larger than the Tsuge technique. Thereafter, the force generated at gap distances of 1 mm, 2 mm, and the maximum force depend on the number of strands and the epitendinous stitches. In this case, the maximum force (31.80 N ± 4.73 N) from the six-strand technique is significantly higher than that from the Kessler-Tajima technique. In particular, all samples from the six-strand technique failed by suture pull-out. In contrast, suture pull-out is less common for the other techniques; these samples also exhibited suture rupture. This study is important because it reveals that cadaveric tendons repaired using the Kessler-Tajima, modified Tsuge, and six-strand techniques can accommodate higher initial forces (compared to the Tsuge technique) and, thus, are more effective for resisting gap formation. Among these techniques, it is shown that the six-strand configuration is reliable because the strands, rather than breaking, results in pull-out at sufficiently high loads. Thus, the six-strand approach for anchoring the ruptured tissue results in the transfer of large forces to the suture. It is suggested that the six-strand technique may be a viable technique since it requires only a single-loop suture and this may simplify the repair procedure and tendon handling without increasing the bulk of the repaired tendon appreciably.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    3
    Citations
    NaN
    KQI
    []