Treatment of Autoimmune Arthritis Using RNA Interference-Modulated Dendritic Cells

2010 
Dendritic cells (DCs) have a dual ability to either stimulate or suppress immunity, which is primarily associated with the expression of costimulatory molecules. Ag-loaded DCs have shown encouraging clinical results for treating cancer and infectious diseases; however, the use of these cells as a means of suppressing immune responses is only recently being explored. Here, we describe the induction of RNA interference through administering short interfering RNA (siRNA) as a means of specifically generating tolerogenic DCs. Knockdown of CD40, CD80, and CD86, prior to loading DCs with the arthritogenic Ag collagen II, led to a population of cells that could effectively suppress onset of collagen-induced arthritis. Maximum benefits were observed when all three genes were concurrently silenced. Disease suppression was associated with inhibition of collagen II-specific Ab production and suppression of T cell recall responses. Downregulation of IL-2, IFN-γ, TNF-α, and IL-17 and increased FoxP3+ cells with regulatory activity were observed in collagen-induced arthritis mice treated with siRNA-transfected DCs. Collectively, these data support the use of ex vivo gene manipulation in DCs using siRNA to generate tailor-made tolerogenic vaccines for treating autoimmunity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    57
    Citations
    NaN
    KQI
    []