De Novo Design of Allosteric Control into Rotary Motor V1-ATPase by Restoring Lost Function

2020 
Protein complexes exert various functions through allosterically controlled cooperative work. De novo design of allosteric control into protein complexes provides understanding of their working principles and potential tools for synthetic biology. Here, we hypothesized that an allosteric control can be created by restoring lost functions of pseudo-enzymes contained as subunits in protein complexes. This was demonstrated by computationally de novo designing ATP binding ability of the pseudo-enzyme subunits in a rotary molecular motor, V1-ATPase. Single molecule experiments with solved crystal structures revealed that the designed V1 is allosterically accelerated than the wild-type by the ATP binding to the created allosteric site and the rate is tunable by modulating the binding affinity. This work opened up an avenue for programming allosteric control into proteins exhibiting concerted functions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []