PLANT MEDIATED SYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES Original Article

2014 
Objective: The study was aimed to synthesis and characterization of silver nanoparticles from five different herbal plants (Terminalia chebula, Mimusops elengi, Myristica fragrans, Centella asiatica and Hemidesmus indicus). Methods: The qualitative analysis of plant extracts was performed to determine the presence of secondary metabolites. The plant mediated silver nanoparticles were synthesized. The color changed into brown to black color indicating the formation of AgNPs. The characterization of synthesized AgNPs was carried out by different methods such as UV-Vis Spectra, FE-TEM, Particle size analysis, Zeta potential analysis, XRD and FTIR. The antimicrobial activity of synthesized silver nanoparticles also examined against three fungi and bacteria. Results: The UV wave length of AgNPs is from 300 to 450 nm. The average size of AgNPs 581 d.nm, zeta potential is -13.3 mV. The FTIR results show that AgNPs contains the functional groups. In antimicrobial activity of all AgNPs synthesized by five plants inhibits the growth of bacteria and Terminalia chebula showed maximum effect. The XRD pattern clearly confirmed that the synthesized silver nanoparticles are crystalline in nature. TEM results shows that synthesized silver nanoparticles are round in shape. Conclusion: The green synthesis of nanoparticles shows that cost-effective, environmentally friendly, and safe for human therapeutic use. Color change, UV-Vis spectra, TEM and XRD analysis confirmed the stability of synthesized AgNPs.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []