miR-300 regulates the epithelial-mesenchymal transition and invasion of hepatocellular carcinoma by targeting the FAK/PI3K/AKT signaling pathway

2018 
Abstract Several microRNAs (miRNAs) have been closely correlated with the development of hepatocellular carcinoma (HCC). However, the involvement of miR-300 in the development of HCC remains unknown. This study elucidated the potential molecular mechanisms of miR-300 in the modulation of the epithelial-mesenchymal transition (EMT) and invasion of HCC. The expression levels of miR-300 in HCC cells and clinical samples were detected by quantitative real-time PCR and in situ hybridization. The in vitro function of miR-300 in HCC was evaluated using a migration/invasion assay. Quantitative real-time PCR, western blotting, immunofluorescence and immunohistochemistry were used to validate the roles of miR-300 and FAK/PI3K/AKT in EMT progression. A dual-luciferase reporter assay was performed to confirm the target gene. miR-300 was down-regulated in HCC and significantly correlated with a poor prognosis in HCC patients. The down-regulation of miR-300 increased the invasiveness of the HCC cells, and promoted the EMT in both HCC tissues and HCC cells. In contrast, up-regulation of miR-300 led to the opposite results. Ectopic overexpression of miR-300 reversed TGF-β1-induced EMT in SMMC-7721 cells, and according to a dual-luciferase reporter assay and rescue assay, miR-300 inhibits the EMT-mediated migration and invasion of HCC cells via the targeted modulation of FAK and the downstream PI3K/AKT signaling pathway. miR-300 targeting modulates FAK, and the PI3K/AKT signaling pathway inhibits the EMT and suppresses the migration and invasion of HCC cells. Thus, miR-300 represents a promising therapeutic target for HCC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    27
    Citations
    NaN
    KQI
    []