Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production

1995 
The enzyme tryptophan decarboxylase (TDC) (EC 4.1.1.28) catalyses a key step in the biosynthesis of terpenoid indole alkaloids inC. roseus by converting tryptophan into tryptamine. Hardly anytdc mRNA could be detected in hormone-independent callus and cell suspension cultures transformed by the oncogenic T-DNA ofAgrobacterium tumefaciens. Supply of tryptamine may therefore represent a limiting factor in the biosynthesis of alkaloids by such cultures. To investigate this possibility, chimaeric gene constructs, in which atdc cDNA is linked in the sense or antisense orientation to the cauliflower mosaic virus 35S promoter and terminator, were introduced inC. roseus cells by infecting seedlings with an oncogenicA. tumefaciens strain. In the resulting crown gall tumour calluses harbouring thetdc sense construct, an increased TDC protein level, TDC activity and tryptamine content but no significant increase in terpenoid indole alkaloid production were observed compared to empty-vector-transformed tumour calluses. In tumour calluses containing thetdc antisense construct, decreased levels of TDC activity were measured. Factors which might be responsible for the lack in increased terpenoid indole alkaloid production in thetdc cDNA overexpressing crown gall calluses are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    78
    Citations
    NaN
    KQI
    []