Stress Characteristics of Non-Axisymmetric Synthetic Abdominal Aortic Aneurysm Models: How Real are They?

2004 
Abdominal aortic aneurysms (AAAs) are abnormal aortic dilatations that are prone to rupture, with fatal consequences. Synthetic aneurysm models are being used to assess in vivo stress characteristics of aneurysms before and after surgical reinforcement. This study seeks to assess peak wall stress characteristics in a latex life- like model. A life-like non-axisymmetric latex AAA model, constructed from a 3D computed tomographic reconstruction of a real AAA, was incorporated into a pulsatile flow unit (PFU) to simulate the cardiac output. Strain gauges were placed at the neck (n= 2 x 3), inflection point (the junction of neck and sac, n=4 x 3) and maximum anteroposterior diameter (n=4 x 3). The arterial pressure settings used were 130/90 and 140/100mmHg, termed the low and high setting respectively. Strain readings were obtained at 10Hz over 30 seconds using a data logger. Stress was derived using the relationship between stress and Young’s modulus (E= 5.151872 Nmm-2). Peak wall stresses were statistically analysed over the two pressure settings using ANOVA in Minitab 13. The highest stresses were noted at the inflection point and not at the maximum diameter, as might have been expected. Peak inflection point stress anteriorly measured 394.69 (SD 218.1) x10-4 N/cm2 in the low setting, increasing to 715.39(SD 230.32) in the high setting (p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []