Germanium-on-Silicon Waveguides for Long-Wave Integrated Photonics: Propagation Loss, Ring Resonance, and Thermo-Optics

2021 
Germanium-on-silicon (GOS) represents the leading platform for foundry-based long-wave infrared photonic integrated circuits (LWIR PICs), due to its CMOS compatibility and absence of oxides. We describe ring resonance (Q-factors between 2×103 and 1×104) and thermo-optic tunability in germanium-on-silicon waveguides throughout the long-wave-infrared. The ring resonances are characterized by Q-factors and couplings that agree with measurements of propagation loss (as low as 6 dB/cm) and simulations and are enabled by broadband edge coupling (12dB/facet over a 3 dB bandwidth of over 4 microns). We demonstrate the furthest into the infrared that ring resonators have been measured and show the potential of this platform for photonic integration and waveguide spectroscopy at wavelengths from 7 microns to beyond 11 microns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []