Microcracks in Dental Porcelain and Their Behavior during Multiple Firing

1996 
Dental porcelains rely on the high-thermal-expansion mineral leucite to elevate their bulk thermal expansion to levels compatible with dental PFM alloys. The microcracks that form around these leucite particles when cooled during porcelain manufacture are a potential source of change in bulk porcelain thermal expansion during fabrication of porcelain-fused-to-metal crowns and bridges. The purpose of the present study was to determine whether multiple firings of commercial dental porcelains could produce changes in microcrack density. Specimens of six commercial porcelains and the "Component No. 1" of the Weinstein patent were fabricated and subjected to 1, 2, 4, 8, and 16 firings. The microcrack densities were determined by quantitative stereology, whereby intersections of microcracks were counted with a test grid. The microcrack data were subjected to linear regression analysis and analysis of variance. The microcrack densities of four of the six porcelains and the Component No. 1 frit were not significa...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    53
    Citations
    NaN
    KQI
    []