Pharmacokinetic modelling to estimate intracellular favipiravir ribofuranosyl-5'-triphosphate exposure to support posology for SARS-CoV-2

2021 
Background The role of favipiravir as a treatment for COVID-19 is unclear, with discrepant activity against SARS-CoV-2 in vitro , concerns about teratogenicity and pill burden, and an unknown optimal dose. In Vero-E6 cells, high concentrations are needed to inhibit SARS-CoV-2 replication. The purpose of this analysis was to use available data to simulate intracellular pharmacokinetics of favipiravir ribofuranosyl-5⍰-triphosphate (FAVI-RTP) to better understand the putative applicability as a COVID-19 intervention. Methods Previously published in vitro data for the intracellular production and elimination of FAVI- RTP in MDCK cells incubated with parent favipiravir was fitted with a mathematical model to describe the time course of intracellular FAVI-RTP concentrations as a function of incubation concentration of parent favipiravir. Parameter estimates from this model fitting were then combined with a previously published population PK model for the plasma exposure of parent favipiravir in Chinese patients with severe influenza (the modelled free plasma concentration of favipiravir substituting for in vitro incubation concentration) to predict the human intracellular FAVI-RTP pharmacokinetics. Results In vitro FAVI-RTP data was adequately described as a function of in vitro incubation media concentrations of parent favipiravir with an empirical model, noting that the model simplifies and consolidates various processes and is used under various assumptions and within certain limits. Parameter estimates from the fittings to in vitro data predict a flatter dynamic range of peak to trough for intracellular FAVI-RTP when driven by a predicted free plasma concentration profile. Conclusion This modelling approach has several important limitations that are discussed in the main text of the manuscript. However, the simulations indicate that despite rapid clearance of the parent drug from plasma, sufficient intracellular FAVI-RTP may be maintained across the dosing interval because of its long intracellular half-life. Population average intracellular FAVI-RTP concentrations are estimated to maintain the Km for the SARS-CoV-2 polymerase for 3 days following 800 mg BID dosing and 9 days following 1200 mg BID dosing after a 1600 mg BID loading dose on day 1. Further evaluation of favipiravir as part of antiviral combinations for SARS-CoV-2 is warranted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    2
    Citations
    NaN
    KQI
    []