Elicitation of broadly protective immunity to influenza by multivalent hemagglutinin nanoparticle vaccines

2020 
Influenza vaccines that confer broad and durable protection against diverse virus strains would have a major impact on global health. However, next-generation vaccine design efforts have been complicated by challenges including the genetic plasticity of the virus and the immunodominance of certain epitopes in its glycoprotein antigens. Here we show that computationally designed, two-component nanoparticle immunogens induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens display 20 hemagglutinin (HA) trimers in a highly immunogenic array, and their assembly in vitro enables precisely controlled co-display of multiple distinct HAs in defined ratios. Nanoparticle immunogens displaying the four HAs of licensed quadrivalent influenza vaccines (QIV) elicited hemagglutination inhibition and neutralizing antibody responses to vaccine-matched strains that were equivalent or superior to commercial QIV in mice, ferrets, and nonhuman primates. The nanoparticle immunogens -but not QIV- simultaneously induced broadly protective antibody responses to heterologous viruses, including H5N1 and H7N9, by targeting the subdominant yet conserved HA stem. Unlike previously reported influenza vaccine candidates, our nanoparticle immunogens can alter the intrinsic immunodominance hierarchy of HA to induce both potent receptor-blocking and broadly cross-reactive stem-directed antibody responses and are attractive candidates for a next-generation influenza vaccine that could replace current seasonal vaccines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    18
    Citations
    NaN
    KQI
    []