Blind Image Quality Assessment Based on Classification Guidance and Feature Aggregation
2020
In this work, we present a convolutional neural network (CNN) named CGFA-CNN for blind image quality assessment (BIQA). A unique two-stage strategy is utilized which firstly identifies the distortion type in an image using Sub-Network I and then quantifies this distortion using Sub-Network II. Different from most deep neural networks, we extract hierarchical features as descriptors to enhance the image representation and design a feature aggregation layer in an end-to-end training manner applying Fisher encoding to visual vocabularies modeled by Gaussian mixture models (GMMs). Considering the authentic distortions and synthetic distortions, the hierarchical feature contains the characteristics of a CNN trained on the self-built dataset and a CNN trained on ImageNet. We evaluated our algorithm on four publicly available databases, and the results demonstrate that our CGFA-CNN has superior performance over other methods both on synthetic and authentic databases.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
0
Citations
NaN
KQI