Water quality and human health: a simple monitoring model of toxic cyanobacteria growth in highly variable Mediterranean hot dry environments.
2020
Abstract Due to population growth, urbanization and economic development, demand for freshwater in urban areas is increasing throughout Europe. At the same time, climate change, eutrophication and pollution are affecting the availability of water supplies. Sicily, a big island in southern Italy, suffers from an increasing drought and consequently water shortage. In the last decades, in Sicilian freshwater reservoirs several Microcystis aeruginosa and more recently Planktothrix rubescens blooms were reported. The aims of the study were: (1) identify and quantify the occurring species of cyanobacteria (CB), (2) identify which parameters, among those investigated in the waters, could favor their growth, (3) set up a model to identify reservoirs that need continuous monitoring due to the presences, current or prospected, of cyanobacterial blooms and of microcystins, relevant for environmental and, consequentially, for human health. Fifteen artificial reservoirs among the large set of Sicilian artificial water bodies were selected and examined for physicochemical and microbiological characterization. Additional parameters were assessed, including the presence, identification and count of the cyanobacterial occurring species, the measurement of microcystins (MCs) levels and the search for the genes responsible for the toxins production. Principal Component Analysis (PCA) was used to relate environmental condition to cyanobacterial growth. Water quality was poor for very few parameters, suggesting common anthropic pressures, and PCA highlighted clusters of reservoirs vulnerable to hydrological conditions, related to semi-arid Mediterranean climate and to the use of the reservoir. In summer, bloom was detected in only one reservoir and different species was highlighted among the Cyanobacteria community. The only toxins detected were microcystins, although always well below the WHO reference value for drinking waters (1.0 μg/L). However, molecular analysis could not show the presence of potential cyanotoxins producers since a few numbers of cells among total could be sufficient to produce these low MCs levels but not enough high to be proved by the traditional molecular method applied. A simple environmental risk-based model, which accounts for the high variability of both cyanobacteria growth and cyanotoxins producing, is proposed as a cost-effective tool to evaluate the need for monitoring activities in reservoirs aimed to guarantee supplying waters safety.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
46
References
7
Citations
NaN
KQI