Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications

2016 
Let $0 1$ be such that $psOmega$ is a bounded domain containing the origin. Staring from the ground state inequality by R. Frank and R. Seiringer we obtain: 1- The following improved Hardy inequality for $p\ge 2$ For all $qOmega, q, N, s)$ such that $$ \int_{{\mathbb R}^N}\int_{{\mathbb R}^N} \, \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}\,dx\,dy - \Lambda_{N,p,s} \int_{{\mathbb R}^N} \frac{|u(x)|^p}{|x|^{p}}\,dx\geq C \int_{\Omega}\dint_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+qs}}dxdy $$ for all $u \in \mathcal{C}_0^\infty({\mathbb R}^N)$. Here $\Lambda_{N,p,s}$ is the optimal constant in the Hardy inequality. 2- Define $p^*_{s}=\frac{pN}{N-ps}$ and let $\beta 0$. 3- If $\beta\equiv \frac{N-ps}{2}$, as a consequence of the improved Hardy inequality, we obtain that for all $qOmega)$ such that \begin{equation*} \int_{{\mathbb R}^N}\int_{{\mathbb R}^N} \dfrac{|u(x)-u(y)|^p}{|x-y|^{N+ps}|x|^{\beta}|y|^{\beta}} \,dy\,dx\ge C(\Omega)\Big(\int_{\Omega} \frac{|u(x)|^{p^*_{s,q}}}{|x|^{2\beta \frac{p^*_{s,q}}{p}}}\,dx\Big)^{\frac{p}{p^*_{s,q}}}, \end{equation*} for all $u\in \mathcal{C}^\infty_0(\Omega)$ where $p^*_{s,q}=\frac{pN}{N-qs}$. \ Notice that the previous inequalities can be understood as the fractional extension of the Callarelli-Kohn-Nirenberg inequalities.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []