Experimental Investigation of Micro Cooling Units on Impingement Jet Array Flow Pressure Loss and Heat Transfer Characteristics

2021 
With the development in additive manufacturing, the use of surface treatments for gas turbine design applications has greatly expanded. An experimental investigation of the pressure loss and heat transfer characteristics within impingement jet arrays with arrays of target surface micro cooling units is presented. The discharge coefficient and Nusselt number are measured and determined for an evaluation of the pressure loss of the flow system and heat transfer level, respectively. Considered are effects of impingement jet Reynolds number ranging from 1000 to 15,000 and micro cooling units (square pin fin) height (h) with associated values of 0.01, 0.02, 0.05, 0.2, and 0.4 D, where D is the impingement hole diameter. Presented are variations of Nusselt number, and Nusselt number ratio, discharge coefficient, discharge coefficient ratio, discharge coefficient correlation. Depending upon the micro cooling unit height, discharge coefficient ratios slightly decrease with height, and the ratio values generally remain unit value (1.0). When Rej = 1000 and 2500 for several cooling units height values, discharge coefficient ratios show the pressure loss decreases about 2–18% and 3–6%, respectively, when compared to the data of a baseline smooth target surface plate. The observed phenomenon is due to the effects of flow blockage of micro cooing units, local flow separation, and near-wall viscous sublayer reattachment. Results also show that heat transfer levels increase 20–300% for some of the tested toughened target surface plates when compared to smooth target surface plates. The heat transfer level enhancement is because of an increase in thermal transport and near-wall mixing, as well as the increased wetted area. In addition, micro cooling units elements break the viscous sublayer and cause greater turbulence intensity when compared to the smooth target surface. Overall, results demonstrate that the target surface micro cooling units do not result in a visible increment in pressure loss and reduce pressure loss of the flow system for some of the tested patterns. Moreover, results show the significant ability of micro cooling units to enhance the surface heat transfer capability of impingement cooling relative to smooth target surfaces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    1
    Citations
    NaN
    KQI
    []