Flattened supercontinuum generation in tellurite-phosphate and chalcogenide-tellurite hybrid microstructured optical fibers with tailored chromatic dispersion spectra

2015 
We report here flattened supercontinuum (SC) generated in tellurite-phosphate and chalcogenide-tellurite hybrid microstructured optical fibers (HMOFs) whose chromatic dispersion spectra are tailored with high freedom due to large refractive index difference (∆n) between the core and cladding glasses. It is shown in the simulation that the tellurite-phosphate HMOF whose chromatic dispersion spectrum is near-zero and flattened with three zero-dispersion wavelengths (ZDWs) over a wide wavelength range from 1000 to 4000 nm is beneficial to obtain broad and flattened SC spectra. By using a large ∆n of 0.49, the tellurite-phosphate HMOF which has flattened chromatic dispersion and three ZDWs is successfully fabricated. When a 20-cm-long tellurite-phosphate HMOF is pumped at 1550 nm with a 1560-W peak power, an SC extended from ~800 to 2400 nm where ~5-dB spectral flatness in the wavelength ranges from 890 to 1425 nm and from 1875 to 2400 nm (~1060-nm bandwidth in total) is observed. In addition, a flattened SC spectrum with ~6-dB spectral flatness over a broad wavelength range from 950 to 3350 nm (2400-nm bandwidth in total) is generated by pumping a 1-cm-long chalcogenide-tellurite HMOF at 2300 nm with a 40-MW peak power.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    0
    Citations
    NaN
    KQI
    []