The Influence of Aluminum Conductor Shape Modification on Eddy-Current Brake Using Finite Element Method

2019 
Vehicles are the most important thing to use by human and to make it safe to use, all vehicle need a safe and reliable braking system, the use of frictional brake can raise the probability of braking failure because of high pressure and temperature operation, to make braking safer, there is a new, alternative braking system called Eddy-Current Brake (ECB) that uses magnet in their braking process. This paper aims to know the influence between the shapes of conductor’s face on braking torque using finite element method, using aluminum with mid-iron in one construction to improve the braking torque produced by conductor. Validation was done before starting FEM calculation to achieve accurate FEM settings, the modeling uses ANSYS Electronics Desktop. The shapes used on conductor’s face are sawtooth, half-circle, and square. The highest braking torque performance on these variables are 15.39213, 16.40432, and 14.25 Nm respectively at their critical speed with a magnetic flux of 0.8 – 2 Tesla at all variables.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []