Analytic model of direct tunnel current through ultrathin gate oxides

2000 
A theoretical model for tunnel leakage current through 1.65–3.90-nm-thick gate oxides in metal-oxide-semiconductor structures has been developed. The electron effective mass in the oxide layer and the Fermi energy in the n+ poly-Si gate are the only two fitting parameters. It is shown that the calculated tunnel current is well fitted to the measured one over the entire oxide thickness range when the nonparabolic E-k dispersion relationship for the oxide band gap is employed. The electron effective mass in the oxide layer tends to increase as the oxide thickness decreases to less than 2.80 nm presumably due to the existence of compressive stress in the oxide layer near the SiO2/Si(100) interface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    78
    Citations
    NaN
    KQI
    []