A dual-ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems
2018
We present a branch-and-bound (B&B) framework for the asymmetric prize-collecting Steiner tree problem (APCSTP). Several well-known network design problems can be transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS), and node-weighted Steiner tree problem (NWSTP). The main component of our framework is a new dual ascent algorithm for the rooted APCSTP, which generalizes Wong’s dual ascent algorithm for the Steiner arborescence problem. The lower bounds and dual information obtained from the algorithm are exploited within powerful bound-based reduction tests and for guiding primal heuristics. The framework is complemented by additional alternative-based reduction tests. Extensive computational results on benchmark instances for the PCSTP, MWCS, and NWSTP indicate the framework’s effectiveness, as most instances from literature are solved to optimality within seconds, including most of the (previo...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
12
References
24
Citations
NaN
KQI