Kinetics of DNA renaturation catalyzed by the RecA protein of Escherichia coli.

1985 
The recA enzyme of Escherichia coli catalyzes renaturation of DNA coupled to hydrolysis of ATP. The rate of enzymatic renaturation is linearly dependent on recA protein concentration and shows saturation kinetics with respect to DNA concentration. The kinetic analysis of the reaction indicates that the Km for DNA is 65 microM while the kcat is approximately 48 pmol of duplex formed (pmol of recA)-1 (20 min)-1. RecA protein catalyzed renaturation has been characterized with respect to salt sensitivity, Mg2+ ion and pH optima, requirements for nucleoside triphosphates, and inhibition by nonhydrolyzable nucleoside triphosphates and analogues. These results are consistent with a Michaelis-Menten mechanism for DNA renaturation catalyzed by recA protein. A model is described in which oligomers of recA protein bind rapidly to single-stranded DNA, and in the presence of ATP, these nucleoprotein intermediates aggregate to bring complementary sequences into close proximity for homologous pairing. As with other DNA pairing reactions catalyzed by recA protein, ongoing DNA hydrolysis is required for renaturation. However, unlike the strand assimilation or transfer reaction, renaturation is inhibited by E. coli helix-destabilizing protein.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    27
    Citations
    NaN
    KQI
    []