Inkjet printing of self-healing polymers for enhanced composite interlaminar properties

2015 
Inkjet printing has been used to introduce an organic system that demonstrates thermally activated self-healing in composites. The organic system is composed of monomers that, when polymerised, are capable of thermally activated self-healing through a reversible Diels–Alder mechanism. After being synthesised the monomers were formulated into inks and inkjet printed on to carbon fibre epoxy prepreg. The polymers were co-cured with the prepreg into composite laminates and the effect on the interlaminar properties of the resultant system was investigated. A single ply at the mid-plane of double cantilever beam specimens was shown to increase the initiation (by NL Point) of the interlaminar fracture toughness by 9%. The interlaminar fracture toughness with regards to crack propagation was shown to increase further by up to 27%. Increases in apparent interlaminar shear strength as measured by short beam shear of up to 11% were also observed compared to unprinted controls. After a thermal treatment the short beam shear specimens are retested and the printed specimens are shown to have significantly smaller decreases in properties compared to the control which is consistent with repair in the interlaminar region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    9
    Citations
    NaN
    KQI
    []