Intelligent robotic gripper with adaptive grasping force

2017 
The on-off control robot gripper is widely employed in pick-and-place operations in Cartesian space for handling hard objects between two positions. Without contact force monitoring, it can not be applied in fragile or soft objects handling. Although, an appropriate grasping force or gripper opening for each target could be searched by trial-and-error process, it needs expensive force/torque sensor or an accurate gripper position controller. It has too expensive and complex control strategy disadvantages for most of industrial applications. In addition, it can not overcome the target slip problem due to mass uncertainty and dynamic factor. Here, an intelligent gripper is designed with embedded distributed control structure for overcoming the uncertainty of object’s mass and soft/hard features. A communication signal is specified to integrate both robot arm and gripper control kernels for executing the robotic position control and gripper force control functions in sequence. An efficient model-free intelligent fuzzy sliding mode control strategy is employed to design the position and force controllers of gripper, respectively. Experimental results of pick-and-place soft and hard objects with grasping force auto-tuning and anti-slip control strategy are shown by pictures to verify the dynamic performance of this distributed control system. The position and force tracking errors are less than 1 mm and 0.1 N, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    8
    Citations
    NaN
    KQI
    []