An approach to one‐dimensional conductive polymer composites

2005 
A substantial approach to one-dimensional (1D) electrically conductive composites was proposed which was based on the thermodynamic analysis of electric-field-induced particle alignment in a nonpolar thermoplastic polymer matrix. The process condition window was based on the real-time exploration of dynamic percolation under different electric fields with carbon black (CB)-filled polyethylene as a model. The CB content was the main factor of the process condition. Its upper limit was set as the critical percolation concentration at the thermodynamic equilibrium state without an electric field to eliminate the possibility of conductive network formation perpendicular to the electric-field direction, whereas its lower limit the critical percolation concentration at the thermodynamic equilibrium state under a critical electric field (E*). A composite with CB content in this window, isothermally treated in an electric field not less than E*, showed conductivity in the electric-field direction about 105 times larger than that in the perpendicular direction. A 1D cluster structure in the direction of the electric filed was confirmed with scanning electron microscopy morphology observations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 184–189, 2005
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    38
    Citations
    NaN
    KQI
    []