In situ measurements of local temperature and contact stress magnitude during wear of ceramic-on-ceramic hip joints.

2014 
Abstract Fluorescence microprobe spectroscopy was applied to in situ assessments of contact stress and local temperature at the contact point of dry-sliding couples during wear tests of two commercially available ceramic-on-ceramic femoral heads. The investigated ceramic hip implants consisted of either monolithic Al 2 O 3 or Al 2 O 3 /ZrO 2 composite. A specially designed pin-on-ball tribometer was employed, which enabled directly testing the femoral head components as received from the maker without further manipulation. The strong fluorescence emission from Cr 3+ impurities contained in Al 2 O 3 served as a responsive sensor for both temperature and stress. Analytical corrections for the averaging effects arising from the finite size of the laser probe were made according to a probe response formalism in which geometrical conditions of the sliding couple were incorporated as boundary conditions. The sample-probe interaction at the contact point was then experimentally calibrated by obtaining probe response functions for the two materials investigated. Based on such theoretical and experimental procedures, deconvolutive computational routines could be set up and the true variations of local temperature and stress at the contact point of the bearing surfaces retrieved from the observed time-dependent broadening and shift of a selected spectral band, respectively. The main result of the in situ investigation was that the monolithic sliding couple showed both significantly lower temperature and lower magnitude of compressive stress at the contact point as compared to the composite one, although the composite couple wore at a significantly lower specific wear rate than the monolithic one.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    10
    Citations
    NaN
    KQI
    []