Regulation of Thermally Activated Delayed Fluorescence to Room Temperature Phosphorescent Emission Channels by Controlling the Excited-States Dynamics via J- and H-Aggregation.

2021 
Control of excited-state dynamics is key in tuning room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) emissions but is challenging for organic luminescent materials (OLMs). We show the regulation of TADF and RTP emissions of a boron difluoride β-acetylnaphthalene chelate (βCBF2 ) by controlling the excited-state dynamics via its J- and H-aggregation states. Two crystalline polymorphs emitting green and red light have been controllably obtained. Although both monoclinic, the green and red crystals are dominated by J- and H-aggregation, respectively, owing to different molecular packing arrangements. J-aggregation significantly reduces the energy gap between the lowest singlet and triplet excited states for ultra-fast reverse intersystem crossing (RISC) and enhances the radiative singlet decay, together leading to TADF. The H-aggregation accelerates the ISC and suppresses the radiative singlet decay, helping to stabilize the triplet exciton for RTP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []