Power-Delay-Error Efficient Approximate Adder for Error-Resilient Applications

2018 
Power dissipation has been the prime concern for CMOS circuits. Approximate computing is a potential solution for addressing this concern as it reduces power consumption resulting in improved performance in terms of power–delay product (PDP). Decrease of power consumption in approximate computing is achieved by approximating the demand of accuracy as per the error tolerance of the system. This paper presents a new approach for designing approximate adder by introducing inexactness in the existing logic gate(s). Approximated logic gates provide flexibility in designing low power error-resilient systems depending on the error tolerance of the applications such as image processing and data mining. The proposed approximate adder (PAA) has higher accuracy than existing approximate adders with normalized mean error distance of 0.123 and 0.1256 for 16-bit and 32-bit adder, respectively, and lower PDP of 1.924E−18J for 16-bit adder and 5.808E−18J for 32-bit adder. The PAA also performs better than some of the rec...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    5
    Citations
    NaN
    KQI
    []