Hydrogen storage in a heterogeneous sandstone formation: dimensioning and induced hydraulic effects

2017 
Large-scale energy storage in the geological subsurface (e.g. by storing hydrogen gas) may help to mitigate effects of a fluctuating energy production arising from the extensive use of renewable energy sources. The applicability of hydrogen (H 2 ) storage in a porous sandstone formation is investigated by defining a usage scenario and a subsequent numerical simulation of a storage operation at an existing anticlinal structure in the North German Basin. A facies modelling approach is used to obtain 25 heterogeneous and realistic parameter sets. The storage operation consists of the initial filling with nitrogen used as cushion gas, the initial filling with H 2 , and six withdrawal periods with successive refilling and shut-in periods. It is found that, on average, the storage can sustain a continuous power output of 245 MW for 1 week when using five storage wells, while peak performance can be as high as 363 MW, indicating that the storage is mainly limited by the achievable extraction rates. The median of the maximum pressure perturbation caused by this storage is around 3 bars and can be observed at a distance of 5 km from the wells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    28
    Citations
    NaN
    KQI
    []