HTGR spent fuel element decay heat and source term analysis
1977
Decay heat, gamma dose rates, and neutron source strengths were determined for spent fuel elements from a High-Temperature Gas-Cooled Reactor (HTGR). The calculations were based on curie values reported in General Atomic Report GA-A13886 for the earlier commercial version of a 3000-MW(t) HTGR utilizing the thorium-uranium four-year fuel cycle. The reactor core was designed for an average thermal power density of 8.5 watts per cm/sup 3/ and a carbon-to-thorium atom ratio which varies between 210:1 and 240:1. Calculations of decay heat, gamma dose rates, and neutron source strengths were made for spent fuel elements from the initial core and from representative nonrecycle and recycle reloads. The study was performed for decay times from 180 days to 10 years. Tables of the isotopic results are given for both the fertile and fissile particles in the fuel elements. In addition, ordered tables of the important isotopic contributors are presented. Graphical presentations of the results are shown and discussed; in addition, comparisons are made with previous determinations.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI