HAMdetector: A Bayesian regression model that integrates information to detect HLA-associated mutations

2021 
Abstract Motivation A key process in anti-viral adaptive immunity is that the Human Leukocyte Antigen system (HLA) presents epitopes as Major Histocompatibility Complex I (MHC I) protein-peptide complexes on cell surfaces and in this way alerts CD8+ cytotoxic T-Lymphocytes (CTLs). This pathway exerts strong selection pressure on viruses, favoring viral mutants that escape recognition by the HLA/CTL system, e.g. by point mutations that decrease binding of viral peptides to MHC I. Naturally, such immune escape mutations often emerge in highly variable viruses, e.g. HIV or HBV, as HLA-associated mutations (HAMs), specific to the host HLA alleles and its MHC I proteins. The reliable identification of HAMs is not only important for understanding viral genomes and their evolution, but it also impacts the development of broadly effective anti-viral treatments and vaccines against variable viruses. By their very nature HAMs are amenable to detection by statistical methods in paired sequence / HLA data. However, HLA alleles are very polymorphic in the human host population which makes the available data relatively sparse and noisy. Under these circumstances, one way to optimize HAM detection is to integrate all relevant information in a coherent model. Bayesian inference offers a principled approach to achieve this. Results We present a new regression model for the detection of HAMs. As we choose a Bayesian approach we can include the novel sparsity-inducing priors, and we obtain easily interpretable quantitative information on HAM candidates. The basic model can be extended to include prior information relevant to HAM detection, which we demonstrate by integrating predictions of epitope affinities to MHC I, predictions of epitope peptide processing, and computation of phylogenetic background. This integrative method improves performance in HAM detection considerably over state-of-the-art methods. Availability The source code of this software is available at https://github.com/HAMdetector/Escape.jl under a permissive MIT license. Contact daniel.habermann@uni-due.de, daniel.hoffmann@uni-due.de
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    0
    Citations
    NaN
    KQI
    []