Somatic embryogenesis and metabolic differences between embryogenic and non-embryogenic structures in mangosteen

2016 
Somatic embryogenesis in mangosteen (Garcinia mangstana L.) was investigated using seed and leaf segments cultured on Murashige and Skoog medium with treatments of 6-benzyladenine (BA) [2.0, 3.0, 4.0 µM] and 2,4-diclorophenoxyacetic acid (2,4-D) [4.5, 9.0, 13.5 µM]. There were four types of structures (globular, nodular compact, friable and spongy) formed. Two treatments resulted in embryogenic characteristics from seed cultures; the highest percentage 46.67 % of globular structure (resembling somatic embryos) grown on 3.0 µM BA and 80 % of nodular compact structures on 4.0 µM BA + 13.5 µM 2,4-D. For the leaf culture, highest percentage, 93.33 % produced nodular compact structures on 2.0 µM BA + 4.5 µM 2,4-D. Histological analysis showed that the globular structure has well-defined protoderm and separated from the original explant. Nodular compact structure also showed the presence of densely cytoplasmic meristematic cells with a high nucleoplasmic ratio. These characteristics observed in globular and nodular compact structure indicates somatic embryo formation. The globular structures which were converted into shoots and roots (60.00 %) showed atypical somatic embryogenesis in mangosteen. Metabolite fingerprinting was carried out using gas chromatography–mass spectrometry. Amino acids, carbohydrates, organic acids and fatty acids were found in both the embryogenic structures and non-embryogenic structures tested. Multivariate discriminant analyses of the metabolic data revealed significant metabolites (P ≤ 0.05) for both types of structures. Principle component analysis suggested that amino acids and carbohydrates were the major compounds distinguishing embryogenic and non-embryogenic structures. Ornithine and mannose were present at significant level in embryogenic structures as compared to non-embryogenic ones while fructose was significantly higher in non-embryogenic structures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    63
    References
    11
    Citations
    NaN
    KQI
    []