Seismic safety of earth dams: A probabilistic approach

1994 
The evaluation of the potential for slope sliding and/or liquefaction failure of earthen dams subjected to earthquake loadings is most often based on deterministic procedures of both the excitation input and of the physical model. Such treatment provides answers in the form of either factor of safety values or a yes or no as to whether liquefaction will occur or not. Uncertainties in the physical properties of the soil in the embankment and the foundation layers underlying the dam are typically treated with parametric studies. Consideration of probabilities pertaining to the uncertainties of the earthquake and of the site characterization is expected to augment the prediction of failure potential by associating slope and liquefaction failure to generic properties of the earthquake and of the site characterization. In this study, the procedures for conditional slope failure/liquefaction probabilities are formulated based on a series of simulated deterministic analyses of a dam cross section . These synthetic earthquakes emanate from a 1-D stationary stochastic process of zero mean and an analytical form of power spectral density function. The response of the dam section is formed upon a dynamic finite element approach which provides the temporal variations of the stresses, strains and pore water pressure throughout the model. The constitutive response of the granular soil skeleton and its coupling with the fluid phase is formulated based on the Biot dynamic equations of motion with nonlinear terms compensated for into soil hysteretic damping. Lastly, a stochastic approach to liquefaction based on the transferring of the input motion statistics to the cross section is presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []