이미지 인식률 개선을 위한 CNN 기반 이미지 회전 보정 알고리즘
2020
이미지 인식 및 영상처리, 컴퓨터 비전 등의 분야에서 합성곱 인공신경망 (Convolutional Neural Network, CNN)은 다양하게 응용되고 탁월한 성능을 내고 있다. 본 논문에서는 CNN을 활용한 이미지 인식 시스템에서 인식률을 저하시키는 요인 중 하나인 이미지의 회전에 대한 해결책으로써 CNN 기반 이미지 회전 보정 알고리즘을 제안한다. 본 논문에서는 Leeds Sports Pose 데이터셋을 활용하여 이미지를 임의의 각도만큼 회전시킨 학습데이터로 인공지능 모델 을 학습시켜 출력으로 회전된 각도를 추정하도록 실험을 진행하였다. 학습된 인공지능 모델을 100장의 테스트 데이터 이미지로 실험하여 mean absolute error (MAE) 성능지표를 기준으로 4.5951의 값을 얻었다.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI