language-icon Old Web
English
Sign In

A Data-Driven Verilog-A ReRAM Model

2018 
The translation of emerging application concepts that exploit resistive random access memory (ReRAM) into large-scale practical systems requires realistic yet computationally efficient device models. Here, we present a ReRAM model, where device current–voltage characteristics and resistive switching rate are expressed as a function of: 1) bias voltage and 2) initial resistive state (RS). The model versatility is validated on detailed characterization data, for both filamentary valence change memory and nonfilamentary ReRAM technologies, where device resistance is swept across its operating range using multiple input voltage levels. Furthermore, the proposed model embodies a window function which features a simple mathematical form analytically describing RS response under constant bias voltage as extracted from physical device response data. Its Verilog-A implementation captures the ReRAM memory effect without requiring integration of the model state variable, making it suitable for fast and/or large-scale simulations and overall interoperable with current design tools.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    41
    Citations
    NaN
    KQI
    []