High-Density Ordered Arrays of CoPt3 Nanoparticles with Individually Addressable Out-of-Plane Magnetization

2019 
The bit-patterned media (BPM) technology is a promising approach for developing high-density memory devices. Porous templates such as anodized aluminum oxide and self-assembled block copolymer films have been explored for use in BPM. In this work, in order to further increase the pore density, we used a mesoporous silica thin film (MSTF) with 8 nm sized regularly ordered pores and 4 nm thick walls as a template to grow CoPt3 nanoparticles (NPs) into two-dimensional hexagonal arrays. The use of a Au(111)/SiO2 substrate induced epitaxial growth of single-crystalline CoPt3 NPs in the face-centered cubic structure, as evidenced by high-resolution transmission electron microscopy and grazing-incidence X-ray scattering data. Direction-dependent magnetic measurements showed that the CoPt3 NPs had out-of-plane magnetic polarization. Magnetic force microscopy (MFM) data indicated that individual CoPt3 NPs could be addressed independently. First-principles electronic structure calculations indicated that the observ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    2
    Citations
    NaN
    KQI
    []