Explaining the MiniBooNE excess by a decaying sterile neutrino with mass in the 250 MeV range.

2019 
The MiniBooNE collaboration has reported an excess of $460.5\pm 95.8$ electron-like events ($4.8\sigma$). We propose an explanation of these events in terms of a sterile neutrino decaying into a photon and a light neutrino. The sterile neutrino has a mass around 250 MeV and it is produced from kaon decays in the proton beam target via mixing with the muon or the electron in the range $10^{-7} \lesssim |U_{\ell 4}|^2 \lesssim 10^{-11}$ ($\ell = e,\mu$). The model can be tested by considering the time distribution of the events in MiniBooNE and by looking for single-photon events in running or upcoming neutrino experiments, in particular by the suite of liquid argon detectors in the short-baseline neutrino program at Fermilab.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    28
    Citations
    NaN
    KQI
    []