Symmetry reduction of δ-plutonium: an electronic-structure effect

2005 
Using first-principles density-functional theory calculations, we show that the anomalously large anisotropy of δ-plutonium is a consequence of greatly varying bond-strengths between the 12 nearest neighbors. Employing the calculated bond strengths, we expand the tenants of classical crystallography by incorporating anisotropy of chemical bonds, which yields a structure with the monoclinic space group Cm for δ-plutonium rather than face-centered cubic Fm3m. The reduced space group for δ-plutonium enlightens why the ground state of the metal is monoclinic, why distortions of the metal are viable, and has considerable implications for the behavior of the material as it ages. These results illustrate how an expansion of classical crystallography that accounts for anisotropic electronic structure can explain complicated materials in a novel way.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []