Investigation of Carrier Conduction Mechanism over InAs/InP Quantum Dashes and InAs/GaAs Quantum Dots Based p-i-n Laser Heterostructures

2017 
Charge transfer characteristics of the long wavelength semiconductor laser structures, containing quantum dot layers (QDs), were investigated by means of temperature dependent current-voltage and electroluminescence measurements over InAs/InP, and InAs/GaAs based p-i-n structures. In InAs/InP elongated QDs (QDashes) structure, injected carriers were tunneled from the quantum well into QDashes through a thin barrier and subsequently recombined within QDashes. Meanwhile, for InAs/GaAs structure, tunneling kind transport was exhibited in both forward and reverse bias voltage directions. The onset of light took place when the forward bias exceeded 1.3 V (3 V) for InAs/InP (InAs/GaAs) p-i-n structure through electroluminescence measurements. The peak value of emitted laser light for InAs/InP QDashes and InAs/GaAs QDs occurred in 1.55 μm and 1.3 μm, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []