Catalytic Activity and Proton Translocation of Reconstituted Respiratory Complex I Monitored by Surface-Enhanced Infrared Absorption Spectroscopy
2018
Respiratory complex I (CpI) is a key player in the way organisms obtain energy, being an energy transducer, which couples nicotinamide adenine dinucleotide (NADH)/quinone oxidoreduction with proton translocation by a mechanism that remains elusive so far. In this work, we monitored the function of CpI in a biomimetic, supported lipid membrane system assembled on a 4-aminothiophenol (4-ATP) self-assembled monolayer by surface-enhanced infrared absorption spectroscopy. 4-ATP serves not only as a linker molecule to a nanostructured gold surface but also as pH sensor, as indicated by concomitant density functional theory calculations. In this way, we were able to monitor NADH/quinone oxidoreduction-induced transmembrane proton translocation via the protonation state of 4-ATP, depending on the net orientation of CpI molecules induced by two complementary approaches. An associated change of the amide I/amide II band intensity ratio indicates conformational modifications upon catalysis which may involve movement...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
49
References
6
Citations
NaN
KQI