NMR backbone and methyl resonance assignments of an inhibitory G-alpha subunit in complex with GDP

2019 
G-proteins are essential switch points at the cell membrane that control downstream signaling by their ability to adopt an inactive, GDP-bound or an active, GTP-bound state. Among other exchange factors, G-protein coupled receptors (GPCRs) induce exchange of GDP to GTP and thus promote the active state of the G-protein. The nucleotide-binding α subunit of the G-protein undergoes major conformational changes upon nucleotide binding. Thus, an NMR analysis of the two distinct nucleotide-bound states is essential for a more detailed understanding of associated structural changes. Here, we provide an NMR backbone as well as methyl group resonance assignment of an inhibitory G-alpha subunit subtype 1 (Gαi,1) in the GDP-bound form and show that, in contrast to the GTP-bound form, large parts of the protein are mobile, presumably caused by a loose arrangement of the two subdomains in Gα that tightly interact with each other only in the GTP-bound state. As the GDP-bound form represents the GPCR-binding-competent state, the presented NMR data will be essential for further studies on G-protein-GPCR interactions and dynamics in solution for receptor systems that couple to G-proteins containing an inhibitory Gα,1 subunit.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []