Metamaterial Assisted Photobleaching Microscopy with Nanometer Scale Axial Resolution.

2020 
The past two decades have witnessed a dramatic progress in the development of novel super-resolution fluorescence microscopy technologies. Here we report a new fluorescence imaging method, called metamaterial assisted photobleaching microscopy (MAPM), which possesses a nanometer-scale axial resolution and suitable for broadband operation across the entire visible spectrum. The photobleaching kinetics of fluorophores can be greatly modified via a separation-dependent energy transfer process to a nearby metamaterial. The corresponding photobleaching rate is thus linked to the distance between the fluorophores and the metamaterial layer, leading to a reconstructed image with exceptionally high axial resolution. We apply the MAPM technology to image the HeLa cell membranes tagged with fluorescent proteins and demonstrate an axial resolution of ~2.4 nm with multiple colors. MAPM utilizes a metamaterial-coated substrate to achieve super-resolution without altering anything else in a conventional microscope, representing a simple solution for fluorescence imaging at nanometer axial resolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    4
    Citations
    NaN
    KQI
    []