Four energy levels device for skin punching
2007
Generally, the beam distribution in the tissue in interaction with a pulsed laser is defined by optical properties (effective
scattering and absorption coefficient). In 2900 nm range, the effective scattering coefficient is much smaller than the
absorption coefficient. An Er:YAG skin puncher is presented. Thermal action of a laser beam can be described as one of
three types: hyperthermia, coagulation and volatilization, depending on the degree and the duration of tissue heating. We
are interested in the volatilization process that means a loss of material. The various constituents of the tissue disappear
in smoke at above 100 0 C in a relatively short time of around one tenth of a second. At the edges of the volatilization zone
there is a region of coagulation necrosis. In presented case of an Er:YAG laser operating in a free generation mode, the
mechanical effects can result from explosive vaporization. When the exposure time of the laser is lower than the
characteristic time of the thermal diffusion in the tissue, it produces a thermal containment with an accumulation of heat
without diffusion and an explosive vaporization of the target. The Er:YAG laser device has the pulse length of about 160
microseconds and four emitted energy levels. This device is used to punch the skin for blood sampling for different kinds
of analysis. The front panel of the device has four keys to select the desired energy according to the skin type.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI