Spin-orbit effects in pentavalent iridates: models and materials.

2021 
Spin-orbit effects in heavy 5dtransition metal oxides, in particular, iridates, have received enormous current interest due to the prediction as well as the realization of a plethora of exotic and unconventional magnetic properties. While a bulk of these works are based on tetravalent iridates (d5), where the counter-intuitive insulating state of the rather extended 5dorbitals are explained by invoking strong spin-orbit coupling, the recent quest in iridate research has shifted to the other valencies of Ir, of which pentavalent iridates constitute a notable representative. In contrast to the tetravalent iridates, spin-orbit entangled electrons ind4systems are expected to be confined to theJ= 0 singlet state without any resultant moment or magnetic response. However, it has been recently predicted that, magnetism ind4systems may occur via magnetic condensation of excitations across spin-orbit-coupled states. In reality, the magnetism in Ir5+systems are often quite debatable both from theoretical as well as experimental point of view. Here we provide a comprehensive overview of the spin-orbit coupledd4model systems and its implications in the studied pentavalent iridates. In particular, we review here the current experimental and theoretical understanding of the double perovskite (A2BYIrO6,A= Sr, Ba,B= Y, Sc, Gd), 6H-perovskite (Ba3MIr2O9,M= Zn, Mg, Sr, Ca), post-perovskite (NaIrO3), and hexagonal (Sr3MIrO6) iridates, along with a number of open questions that require future investigation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    154
    References
    0
    Citations
    NaN
    KQI
    []