Free electron laser based biophysical and biomedical instrumentation

2003 
A survey of biophysical and biomedical applications of free-electron lasers (FELs) is presented. FELs are pulsed light sources, collectively operating from the microwave through the x-ray range. This accelerator-based technology spans gaps in wavelength, pulse structure, and optical power left by conventional sources. FELs are continuously tunable and can produce high-average and high-peak power. Collectively, FEL pulses range from quasicontinuous to subpicosecond, in some cases with complex superpulse structures. Any given FEL, however, has a more restricted set of operational parameters. FELs with high-peak and high-average power are enabling biophysical and biomedical investigations of infrared tissue ablation. A midinfrared FEL has been upgraded to meet the standards of a medical laser and is serving as a surgical tool in ophthalmology and human neurosurgery. The ultrashort pulses produced by infrared or ultraviolet FELs are useful for biophysical investigations, both one-color time-resolved spectrosc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    114
    References
    70
    Citations
    NaN
    KQI
    []