Experimental study of the effect of water level and wind speed on radon exhalation of uranium tailings from heap leaching uranium mines

2019 
Water level and wind speed have important influences on radon release in particle-packing emanation media. Based on radon migration theory in porous media under three water level conditions, an experimental setup was designed to measure the surface radon exhalation rate of uranium tailings from heap leaching uranium mine at different water levels and wind speeds. When the water level was at 0.3 m (overlying depth 0.05 m), radon transfer velocities at the gas–liquid interface were also measured at different wind speeds. Results show that when the water level was equal to or lower than the surface of the sample, the radon exhalation rate increased with increasing wind speed and decreased with increasing water level. When the water level was higher than the surface of the sample, radon exhalation rate of the water surface increased with increasing surface wind speed. The wind speed, however, was less influential on the radon exhalation rate as the depth of the overlying water increased, with a dramatic decrease in radon release. That said, at different wind speeds, radon transfer velocities at the gas–liquid interface were consistent with literature. On the other hand, changes in wind speed had significant influences on the radon transfer velocity at the gas–liquid interface, with the effect less pronounced at higher wind speeds.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    4
    Citations
    NaN
    KQI
    []