The transient motion of a spherical fluid droplet

1991 
Abstract A numerical method is developed for investigation of the unsteady motion of a spherical fluid droplet under the influence of gravity. This study extends previous work valid for creeping flow to moderate Reynolds number. The unsteady flow fields inside and outside of the fluid sphere are described by the two-dimensional, axisymmetric Navier-Stokes equations in the form of vorticity and stream function, along with the equation of motion of the droplet. The governing equations are approximated by a central difference and a second-order upwind difference, and are solved iteratively using the Gauss-Siedel and secant methods. Numerical results of the time-dependent vorticity, stream function and drop velocity are presented for a water droplet moving through air and for an air bubble rising in water. The steady state drop velocity and the drag coefficient at various Reynolds numbers are examined, and they are shown to agree very well with previous results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    1
    Citations
    NaN
    KQI
    []