Structural activity relationship between Salmonella-mutagenicity and nitro-orientation of nitroazaphenanthrenes

2003 
Abstract Nitroazaphenanthrenes (NAphs) and their N -oxides (NAphOs) were synthesized as derivatives with nitrogen atoms in the 1, 4, and 9 positions of phenanthrene rings, and as nitrated derivatives substituted at the 1, 2, 3, 4, 5, 6, 7, and 8 positions of phenanthrene rings. To determine the structure activity relationship of these derivatives, all 19 isomers were bioassayed with Salmonella tester strains. NAphs substituted at the 4, 6, 7 and 8 positions were mutagenic for TA98, and 1-, 2-, and 3-N-9-AphOs, 6-N-1-AphO and 6-N-4-AphO were mutagenic for TA98 and TA100 without the S9 mix, while 5-N-1-AphO and 5-N-9-AphO were non- or weakly mutagenic. Nitrated derivatives, 6-N-4-Aph, 6-N-9-Aph, 6-N-1-AphO, and 6-N-4-AphO, were powerful mutagens for TA98 and TA100. Mutagenicity was enhanced by mutant strains producing nitroreductase, such as YG1021 and 1026, and by those producing O -acetyltransferase, such as YG1024 and 1029. Nitro derivatives substituted at positions 4 and 5 in the phenanthrene rings were perpendicular, while those at positions 2, 3, 6 and 7 were coplanar to the phenanthrene rings. NAphs substituted at the 1 and 8 positions were noncoplanar due to steric hindrance of the aromatic proton at the peri position. On the other hand, 1,5- and 1,8-dinitro-4-azaphenanthrenes showed high mutagenicity for strains TA98 and TA100 in the absence of the S9 mix, and were strongly enhanced by nitroreductase and O -acetyltransferase, over-producing mutants. Therefore, it was found that the mutagenic potency of NAphs and NAphOs was closely associated with the chemical properties and orientation of nitro substitution of aromatic rings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    6
    Citations
    NaN
    KQI
    []