Proton gradient-dependent transport of glycine in rabbit renal brush-border membrane vesicles.

1987 
Abstract This study describes evidence for the existence of a H+/glycine symport system in rabbit renal brush-border membrane vesicles. An inward proton gradient stimulates glycine transport across the brush-border membrane, and this H+-driven glycine uptake is attenuated by the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone. It is a positive rheogenic process, i.e. the H+-dependent glycine uptake is further enhanced by an intravesicular negative potential. Glycine uptake is stimulated to a lesser degree by an inward Na+ gradient. H+-dependent glycine uptake is inhibited by sarcosine (69%), an analog amino acid, imino acids (proline 81%, hydroxy proline 67%), and beta-alanine (31%), but not by neutral (L-leucine) or basic (L-lysine) amino acids. The results demonstrate that H+ glycine co-transport system in rabbit renal brush-border membrane vesicles is a carrier-mediated electrogenic process and that transport is shared by imino acids and partially by beta-alanine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    32
    Citations
    NaN
    KQI
    []